Applications - Chapitre 4

Oscillateur harmonique et mouvement circulaire
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A.4.1 Equation différentielle du deuxieme ordre

@ Equation différentielle linéaire inhomogene du deuxiéme ordre : équation
linéaire liant une fonction f () et sa dérivée seconde :

CCZ;T{ t)=—a?f(t)— B ou a, B = cstes # 0 (A.4.1)J

on considere uniquement le cas le plus simple ou il n'y a pas de dérivée
premiere.

o Equation différentielle : (A.4.1) remise en forme (a # 0)

d*f B
@ Changement de “variable” : fonction g (¢) rendant I'équation
différentielle (A.4.2) homogene :

()= f(t)+ 2 (4.4.3)

02
@ Dérivée seconde : changement de “variable” (A.4.3)

g . df d?(@)_d?f

W= O )= a0 AAY
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A.4.1 Equation différentielle du deuxieme ordre

@ Equation différentielle homogene : a partir de I'équation différentielle
inhomogene en substituant (A.4.3) et (A.4.4) dans (A.4.2) :

d?g

S ()= —a2g(t (A.4.5)J
Proposition : équation différentielle homogéene du premier ordre

d

Yty=v—a2g(® (A.4.6)

dt

Démonstration :

d?g d (dg d dg

—Z ) == (=(t :—( —a? t): —a2 =2 (t)=—a?g(t

0 =5 (20) =5 (V=a0) =v=ar L0 = -’ 0

@ Solutions complexes particulieres : équation différentielle (A.4.6)

g (t) = cexp < — a? t) =cexp (fiat) (A.4.7)
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A.4.1 Equation différentielle du deuxieme ordre

@ Fonctions trigonométrique : formule d'Euler inverse

cos (at) = Re (exp (i at)) = % (exp (iat) + exp (—iat)) (A4.8)

sin (at) = Im (exp (i at)) = 2% (exp (tat) — exp(—iat))

Solution réelle : combinaison linéaire de solutions réelles particuliéres

g (t) =acos(at)+ bsin (at) (A.4.9)
Dérivée temporelle de la solution réelle :

d

d—‘z (t) = —aasin (at) + abceos (at) (A.4.10)

Conditions initiales : (A.4.9) et (A.4.10) évaluésent =0

g(0)=a et ( ) = (A.4.11)
Solution réelle : (A.4. 11) dans (A.4.9)
g(t)=g(0)cos(at)+ é % (0) sin (« t) (A.4.12)J
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A.4.1 Equation différentielle du deuxieme ordre

@ Solution réelle : équation différentielle homogene

1 dg

g(t)=g(0)cos(at)+ o (0) sin (a t) (A.4.12)
@ Changement de “variable” : inverse
=g~ 5 (A4.13)

e Conditions initiales : (A.4.13) et dérivée évaluées en t = 0

g(0)=f(0)+ 2 (4414

2

dg df
- (0) = o (0) (A.4.15)

@ Solution réelle : équation différentielle inhomogene

a2 o dt

f(t) = (f (0) + ﬁ) cos (at) + La (0)sin (at) — £ (A.4.16)J
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4.2 Equation différentielle du deuxieme ordre

@ Solution réelle : équation différentielle inhomogene

d

f(t) = (f (0) + %) cos (at) + é d_]z: (0)sin (at) — % (A.4.16)

o Changement de variable : A € R% et § € [0,2n7)
1d

f(0)+ % = Acos (0) et - d_{ (0) = — Asin (6) (A.4.17)
@ Solution réelle : (A.4.17) dans (A.4.16)

F(t)=A (Cos (art) cos (6) — sin (at)sin (5)) _ % (A.4.18)
@ Formule de trigonométrie : angles ot et o

cos (at+ &) = cos (at)cos(d) — sin (at)sin (0) (A.4.19)
@ Solution réelle : (A.4.19) dans (A.4.18) et (A.4.13)

f(t)=Acos(at+ ) — % oun  ¢g(t)=Acos(at+ ) (A.4.20)J
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A.4 Oscillateur harmonique et mouvement circulaire
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A.4.2 Oscillateur harmonique vertical

@ Mouvement oscillatoire vertical : axe vertical Ox orienté vers le haut
©Q Position verticale :  f(t) =z (¢)
© Position verticale relative : ¢ (t) =y ()

© Angle de déphasage nul: 6 =0

© Pulsation et champ gravitationnel : a=w et B=g
Q@ Amplitude: A=C
d’z 2 g
Y Y
(A4.3) = y(t)::r;(t)JrE = x(t):y(t)—ﬁ
(A.4.206) = y(t) = C cos(wt)
(A.4.20a) = x(t) =Ccos(wt)— % J
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A.4.2 Oscillateur harmonique vertical

@ Interprétation physique :

r(t)=y(t)— = A

w2

Q =z (t) est la position par
rapport a l'origine
correspondant a la position
d'équilibre du ressort a vide.

@ vy (t) est la position par
rapport a |'origine
correspondant a la position
d'équilibre du ressort
lorsqu’une masse est
suspendue au ressort.
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A.4 Oscillateur harmonique et mouvement circulaire
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A.4.3 Oscillateur a double ressort

@ Longueur a vide des ressorts @ et @ 1,0

@ Forces extérieures (masse m) :
Q@ Poids: P=mg=mg2z
© Force élastique @ . Foo=—ki(z—0) 2

© Force élastique @ . Fo,=ko(h— 2z— ¥{2)2

@ Accélération (masse m): a=2%22

@ Loi du mouvement (masse m) :

Y F>**=P+F, +F,=ma

selon 2 : mg— ki (z— 01) +ka(h— z2— l3) =mZ (A.4.21)
é+(M>Z_(g+k2(h—€2)+k1€1):O (A.4.22)J
m m
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A.4.3 Oscillateur a double ressort

e Equation du mouvement : (A.4.22) remise en forme

gy (Pdhe) (o mgrkehz )b, (A.4.23)
m k1 + k2

@ Changement de variable : pour rendre homogene (A.4.23)

mgq + ko (h — 62) + k104
— 2z — =z — A.4.24
T =z . z— 2 ( )

@ Changement de variable : dérivée temporelle seconde
T =z (A.4.25)

e Equation du mouvement : (A.4.24) et (A.4.25) dans (A.4.23)

7+ (kl il kZ) z =0 (A.4.26)

m

@ La distance zy > 0 correspond a la coordonnée de la position d'équilibre
de la masse m (i.e. £ = 0). Ainsi, la coordonnée x représente la
déviation par rapport a équilibre.
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A.4.3 Oscillateur a double ressort

@ Oscillateur harmonique autour de la position d'équilibre z = zg ou x = 0 :

i + k
jH—( Lt 2)::::0
m

@ Pulsation :

2:k1+k2
m

w

=

Les constantes élastiques des ressorts s'additionnent :

@ Période d’oscillation :

\/k:1+k:2 |k
W = — —

m m

T:2—7T:27r\/ m
w k1 +

@ Equations horaires :

k2

x (t) = C cos (wt + )

z(t) = Ccos (wt+ @) + 2o
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(A.4.26)

(A.4.27)

k=Fk + ko

(A.4.28)

(A.4.29)

(A.4.30)
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